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Suicide attempts and deaths have very low base rates (14 per 100,000 in 2017)

Low base rate events are statistically difficult to predict unless risk factors have an 

exceedingly large effect

Suicidologists have focused on identifying risk factors and warning signs for suicidal 

behaviors
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The lifetime rate of death by suicide in the general population is 1.6%

The lifetime rate of death by suicide among outpatients with mood disorders is 2%

The lifetime rate of death by suicide inpatients with mood disorders is 4%

96 to 98% of mood disorder patients will NOT die by suicide
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Psychiatric Disorders

Medical disorders including pain

Traumatic brain injury

Previous attempts

Family history of suicide

Access to lethal means

Stressful life events

Traumatic exposure…etc.
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10 clinical practice guidelines

12 additional resources

1,353 pages in total

Mostly rationally derived by experts in the field
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Lack of clear consensus 

“assessment of evidence-based suicide risk factors (100 %)

assessment of suicidal intent (80 %)

recommended treatments (80 %)

restricting access to means (80 %)

postvention practice recommendations (70 %)

suicide risk level categorizations (60 %)

recommended risk assessment measures (60 %)

tools for outpatient management (60 %)

confidentiality issues (60 %)

training recommendations (50 %)

legal issues (50 %)

safety planning (40 %)

ethical considerations (30 %).”
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Meta-analysis looking at longitudinal studies over the last 50 years

The study analyzed effects in 365 papers

Resulted in 3,923 cases of risk and protective factors 

Aimed to identify risk and protective factors across a wide variety of categories

(i.e., biological, screening measures, cognition, demographics, externalizing and 

internalizing disorders, family history, general psychopathology, implicit processes, 

personality traits, physical illness, psychosis, previous suicidal behavior, exposure to suicidal 

behavior, social factors, and treatment history)
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Conclusions:

Risk factors are generally weak and inaccurate predictors of suicide attempts and deaths

Prediction has not improved over time

Longer time intervals did not demonstrate better prediction (many studies 5-10 years)

No risk factor category is meaningfully stronger than another
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Conclusions (continued):

Protective factors are not commonly studied and are also weak predictors

Risk factor categories are homogeneous across the 50 years and have become more 

homogenized over time

No evidence of unique predictors of suicidal ideation vs. attempt vs. death

The combined risk factors only correctly identified 9% of suicide deaths
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“In terms of clinical significance, assuming these weighted odds ratio figures would apply 

on a population level, these combined risk factor effects would increase the 1-year odds of:

Suicide death from 0.013 to 0.019 per 100 people

Suicide attempt from 0.33 to 0.49 per 100 people

And suicide ideation from 2 to 3 per 100 people.”

Suicide death from 13 to 19 per 100,000 people

Suicide attempt from 330 to 490 per 100,000 people

And suicide ideation from 2,000 to 3,000 per 100,000 people.
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Examined suicide deaths following 53,869 hospitalizations of active duty Army soldiers

Developed an actuarial risk algorithm based on machine learning (penalized regression and 

regression trees)

68 soldiers died by suicide in the 12 month follow-up period
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The best predictors of death by suicide were:

• Male sex (OR 7.9)

• Older age at enlistment (OR 1.9)

• Verbal violence (OR 2.2)

• Weapons possession (OR 5.6)

• Prior suicidality (OR 2.9)

• Number of antidepressant prescriptions (OR 1.3)

The full model included 73 variables to predict death by suicide
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Researchers divided the sample into risk ventiles (20 different levels of risk)

52% of suicides occurred among the 5% highest risk admissions per this algorithm
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Examined non fatal suicide attempts identified in medical records (n = 3,250)

Compared to non-suicidal self injury patients (n = 1,917) and random hospital cases (n = 

12,695)

Used random forest ML to attempt to accurately categorize patients
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Area under the receiver operating characteristic curve statistic (AUC)

AUC scores can range from 0.5 (accuracy no better than chance) to 1.0 (perfect 

accuracy

AUC Values comparing patients with non-fatal attempt to those with non-suicidal self-injury

No prior attempt Prior attempt Traditional

methods

7 days prior 0.82 0.85 0.66

720 days prior 0.75 0.76 0.68
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AUC Values comparing patients with non-fatal attempt to random patients

AUC 

7 days prior 0.92

720 days prior 0.86
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Used data available in electronic health records in 7 healthcare systems to predict suicide 

attempts and deaths over 90 day follow up

Primary Care and Speciality Mental Healthcare settings (only visits with a mental health 

diagnosis)

2,960,929 participants

313 demographic and clinical characteristics from EHR
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Strongest predictors were mental health and substance use diagnosis, mental health 

emergency care and inpatient, and history of self harm
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Suicide Attempts prediction

C-statistic

Specialty mental 

health

0.85

Primary care 0.85
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Suicide Deaths prediction

C-statistic

Specialty mental 

health

0.86

Primary care 0.83
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Systematic review of 17 studies with 64 suicide prediction models

11 studies looked at deaths; 6 at attempts

Included military, VA, and civilian healthcare settings

Aimed to investigate the balance of true positives and false negatives by looking at positive 

predictive values and sensitivity



FIRST UP
CONSULTANTS

SYSTEMATIC REVIEW OF PREDICTION MODELS
(Belsher et al. 2019)

35

Results demonstrated generally good classification of suicide mortality versus non deaths

AUCs ranging from 0.59 to 0.86

Sensitivities varied dependent upon the risk level indicated from 0.10 to 0.94

Positive predictive values were very poor mostly around 0.01

This statistic means 99 out of 100 people identified as at risk for death by suicide would not 

go on to die by suicide

The highest PPV was 0.19 in an Iranian sample with a very high rate of death by suicide 

(8,400 per 100,000)
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Prediction of suicide mortality is inherently difficult due to very low base rates

Prediction must balance true positives and false negatives and there is no inherent “right” 

balance point

Suicide prediction models have begun to improve, especially those using ML algorithms

There is likely always going to be an upper limit on how useful prediction models will be
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